您好、欢迎来到现金彩票网!
当前位置:棋牌游戏网 > 边界守卫 >

高中数学函数的值域怎么计算?

发布时间:2019-08-29 05:32 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。

  本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。

  练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5})

  解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。

  点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。

  当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域

  点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。

  练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})

  若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。

  点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。

  点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。

  练习:求函数y=1/(2x2-3x+1)的值域。(答案:值域为y≤-8或y0)。

  对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。

  点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。

  点评:本题是将函数的值域问题转化为函数的最值。对开区间,若存在最值,也可通过求出最值而获得函数的值域。

  A.(-∞,+∞) B.[-7,+∞] C.[0,+∞) D.[-5,+∞)

  求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域。

  点拨:由已知的函数是复合函数,即g(x)= -√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域。

  在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{yy≤4/3}。

  点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。

  以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。

  点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域。

  点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。

  点评:对于形如函数y=√x2+a ±√(c-x)2+b(a,b,c均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。

  练习:求函数y=√x2+9 +√(5-x)2+4的值域。(答案:{yy≥5√2})

  对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。

  点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识。

  点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。

  点评:考查函数自变量的取值范围构造不等式(组)或构造重要不等式,求出函数定义域,进而求值域。不等式法是重要的解题工具,它的应用非常广泛。是数学解题的方法之一。

  通过换元,使高次函数低次化,分式函数整式化,无理函数有理化,超越函数代数以方便求值域。

  如果一个函数的值域不易求,而它的反函数的定义域易求.那么,我们通过求后者而得出前者.

  点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。

  本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。

  练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5})

  点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。

  当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域

  点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。

  练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})

  若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。

  点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。

  点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。

  练习:求函数y=1/(2x2-3x+1)的值域。(答案:值域为y≤-8或y0)。

  对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。

  点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。

  点评:本题是将函数的值域问题转化为函数的最值。对开区间,若存在最值,也可通过求出最值而获得函数的值域。

  A.(-∞,+∞) B.[-7,+∞] C.[0,+∞) D.[-5,+∞)

  求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域。

  点拨:由已知的函数是复合函数,即g(x)= -√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域。

  在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{yy≤4/3}。

  点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。

  以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。

  点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域。

  点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。

  点评:对于形如函数y=√x2+a ±√(c-x)2+b(a,b,c均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。

  练习:求函数y=√x2+9 +√(5-x)2+4的值域。(答案:{yy≥5√2})

  对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。

  点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识。

  点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。

http://viralbirds.com/bianjieshouwei/492.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有